Coexpression of two odorant-binding protein homologs in Drosophila: implications for olfactory coding.
نویسندگان
چکیده
Odorant-binding proteins (OBPs) are small soluble proteins present in the aqueous medium surrounding olfactory receptor neurons. Their function in olfaction is still unknown: they have been proposed to facilitate the transit of hydrophobic molecules to olfactory receptors, to deactivate the odorant stimulus, and/or to play a role in chemosensory coding. In this study we examine the genomic organization and expression patterns of two olfactory-specific genes (OS-E and OS-F) of Drosophila melanogaster, the products of which are members of a protein family in Drosophila sharing sequence similarity with moth OBPs. We show that the OS-E and OS-F transcription units are located <1 kb apart. They are oriented in the same direction and display a similar intron-exon organization. Expression of both OS-E and OS-F proteins is restricted spatially to the ventrolateral region of the Drosophila antenna. Within this region both OS-E and OS-F proteins are expressed within two different types of sensory hairs: in most, if not all, sensilla trichodea and in approximately 40% of the interspersed small sensilla basiconica. We consistently observe that OS-E and OS-F are coexpressed, indicating that an individual sensillum can contain more than one odorant-binding protein. The functional significance of the observed expression pattern and its implications for olfactory coding are discussed.
منابع مشابه
Recent concepts about sense of smell, odorant receptors and physiology of olfaction- an insight
The sense of olfaction reached its zenith in development much earlier than other special senses. Olfaction is much more acute than the other senses, exhibits both high sensitivity for odours and high discrimination between them. This plays a very important role even in the social and behavioral aspects of human beings. Recent studies using molecular genetics, electrophysiology and behavioral an...
متن کاملNatural variation in odorant recognition among odorant-binding proteins in Drosophila melanogaster.
Chemical recognition is essential for survival and reproduction. Adaptive evolution has resulted in diverse chemoreceptor families, in which polymorphisms contribute to individual variation in chemosensation. To gain insights into the genetic determinants of individual variation in odorant recognition, we measured olfactory responses to two structurally similar odorants in a population of wild-...
متن کاملLUSH Shapes Up for a Starring Role in Olfaction
In the fruit fly Drosophila, odorant-binding proteins are secreted into the fluid that bathes olfactory neurons. Laughlin et al. (2008) now challenge the assumption that the odorant-binding protein LUSH passively transports its pheromone to a specific olfactory receptor. Instead, LUSH undergoes a conformational change upon pheromone binding that is sufficient for neuronal activation.
متن کاملLUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster.
The molecular mechanisms mediating chemosensory discrimination in insects are unknown. Using the enhancer trapping approach, we identified a new Drosophila mutant, lush, with odorant-specific defects in olfactory behavior. lush mutant flies are abnormally attracted to high concentrations of ethanol, propanol, and butanol but have normal chemosensory responses to other odorants. We show that wil...
متن کاملCoexpression of Two Functional Odor Receptors in One Neuron
One of the most fundamental tenets in the field of olfaction is that each olfactory receptor neuron (ORN) expresses a single odorant receptor. However, the one receptor-one neuron principle is difficult to establish rigorously. Here we construct a receptor-to-neuron map for an entire olfactory organ in Drosophila and find that two receptor genes are coexpressed in one class of ORN. Both recepto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 5 شماره
صفحات -
تاریخ انتشار 1997